Poster
GaussMark: A Practical Approach for Structural Watermarking of Language Models
Adam Block · Alexander Rakhlin · Ayush Sekhari
Poster Session Room TBD
Watermarking, the process by which Large Language Model (LLM) servers imbed an imperceptible signal at inference time in order to detect text generated by their own models, has grown in importance due to the significant improvements in natural language processing tasks by modern LLMs. Current approaches are often impractical due to generation latency, detection time, degradation in text quality, or robustness; such problems often arise due to the focus on token level watermarking, which ignores the inherent structure of text. In this work, we introduce a new scheme, GaussMark, that is simple and efficient to implement, has formal statistical guarantees, comes at no cost in generation latency, and embeds the watermark into the weights of the model itself, providing a structural watermark. Our approach is based on Gaussian independence testing and is motivated by recent empirical observations that minor additive corruptions to LLM weights can result in models of identical (or even improved) quality. We provide formal statistical bounds on the validity and power of our procedure and, through an extensive suite of experiments, demonstrate that GaussMark is reliable, efficient, relatively robust to corruption, and can be instantiated with essentially no loss in model quality.
Live content is unavailable. Log in and register to view live content