Poster
Exact Recovery of Sparse Binary Vectors from Generalized Linear Measurements
Neha Sangwan · Arya Mazumdar
[
Abstract
]
Tue 15 Jul 4:30 p.m. PDT
— 7 p.m. PDT
Abstract:
We consider the problem of *exact* recovery of a $k$-sparse binary vector from generalized linear measurements (such as *logistic regression*). We analyze the *linear estimation* algorithm (Plan, Vershynin, Yudovina, 2017), and also show information theoretic lower bounds on the number of required measurements. As a consequence of our results, for noisy one bit quantized linear measurements ($\mathsf{1bCS}$), we obtain a sample complexity of $O((k+\sigma^2)\log{n})$, where $\sigma^2$ is the noise variance. This is shown to be optimal due to the information theoretic lower bound. We also obtain tight sample complexity characterization for logistic regression. Since $\mathsf{1bCS}$ is a strictly harder problem than noisy linear measurements ($\mathsf{SparseLinearReg}$) because of added quantization, the same sample complexity is achievable for $\mathsf{SparseLinearReg}$. While this sample complexity can be obtained via the popular lasso algorithm, linear estimation is computationally more efficient. Our lower bound holds for any set of measurements for $\mathsf{SparseLinearReg}$ (similar bound was known for Gaussian measurement matrices) and is closely matched by the maximum-likelihood upper bound. For $\mathsf{SparseLinearReg}$, it was conjectured in Gamarnik and Zadik, 2017 that there is a statistical-computational gap and the number of measurements should be at least $(2k+\sigma^2)\log{n}$ for efficient algorithms to exist. It is worth noting that our results imply that there is no such statistical-computational gap for $\mathsf{1bCS}$ and logistic regression.
Live content is unavailable. Log in and register to view live content