Poster
Self-Discriminative Modeling for Anomalous Graph Detection
Jinyu Cai · Yunhe Zhang · Jicong Fan
Identifying anomalous graphs is essential in real-world scenarios such as molecular and social network analysis, yet anomalous samples are generally scarce and unavailable. This paper proposes a Self-Discriminative Modeling (SDM) framework that trains a deep neural network only on normal graphs to detect anomalous graphs. The neural network simultaneously learns to construct pseudo-anomalous graphs from normal graphs and learns an anomaly detector to recognize these pseudo-anomalous graphs. As a result, these pseudo-anomalous graphs interpolate between normal graphs and real anomalous graphs, which leads to a reliable decision boundary of anomaly detection. In this framework, we develop three algorithms with different computational efficiencies and stabilities for anomalous graph detection. Extensive experiments on 12 different graph benchmarks demonstrated that the three variants of SDM consistently outperform the state-of-the-art GLAD baselines. The success of our methods stems from the integration of the discriminative classifier and the well-posed pseudo-anomalous graphs, which provided new insights for graph-level anomaly detection.
Live content is unavailable. Log in and register to view live content