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Neural networks are vulnerable to adversarial attacks
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Photo: Goodfellow et al, Explaning and harnessing adversarial examples, ICLR 2015
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Existing robustness certification algorithms compute a 
certified lower bound of min adversarial distortions
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Worst-case perturbation
||𝒙𝒙 − 𝒙𝒙𝟎𝟎||𝒑𝒑 ≤ 𝝐𝝐

Do not exist!



Neural networks are also vulnerable to random noises
4

True image: 9 Adv image: 2 Adv image: 3

Adv image: 4 Adv image: 7 Adv image: 8

LeNet is fooled by Gaussian noises 
(Bibi etal, CVPR 2018)

VGG-F is fooled by uniform noises 
(Fawzi etal, NIPS 2016)

True image: cauliflower Adv image: artichoke
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Success rate over randomly 
selected 100 images can be 
up to 100%

Neural networks are also vulnerable to random noises
Attacks with Uniform & Bernoulli noises: 



Existing approaches analyzing neural networks + 
random noises
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• Assumptions on locally approximately 
flat decision boundaries (Franceschi
etal, AIstats 2018)

• Assumptions on Gaussian distributed 
latent input vectors (Fawzi etal, 2018)

• Estimate probability of rare events via 
Monte Carlo approach (Webb etal, 
ICLR 2019)

Our goal
Provide a certificate of neural network 

robustness under random noises 

Key Idea
Leverage prior robustness certification 

frameworks (Fast-Lin[1], CROWN[2], CNN-
Cert[3]) on adversarial perturbations 

 Bounded Subgaussian Noises (e.g. Uniform, Bernoulli)
 Gaussian Noises (w/ and w/o Correlations)

[1] Weng etal, “Toward Fast Computation of Certified Robustness for ReLU Networks”, ICML’18
[2] Zhang etal, “Efficient Neural Network Robustness Certification with General Activation Functions”, NeurIPS’18
[3] Boopathy etal, “CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks”, AAAI’19

Existing works



Worst-case robustness certification algorithms 7

Worst-case perturbation

𝑓𝑓 𝑥𝑥 = NN, and 𝑥𝑥0= Original image, 𝑥𝑥= Perturbed image, 𝑥𝑥 − 𝑥𝑥0 ≤ 𝜀𝜀

𝐿𝐿 ≤ 𝑓𝑓 𝑥𝑥 ≤ 𝑈𝑈

𝐿𝐿 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐿𝐿
𝑈𝑈 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑈𝑈

𝐿𝐿 = 𝐴𝐴𝐿𝐿𝑥𝑥 + 𝐵𝐵𝐿𝐿
𝑈𝑈 = 𝐴𝐴𝑈𝑈𝑥𝑥 + 𝐵𝐵𝑈𝑈

𝐿𝐿 = 𝐴𝐴𝐿𝐿 ∗ 𝑥𝑥 + 𝐵𝐵𝐿𝐿
𝑈𝑈 = 𝐴𝐴𝑈𝑈 ∗ 𝑥𝑥 + 𝐵𝐵𝑈𝑈



Our proposal: PRObabilistically VErify NN robustness 8

ICML ‘19
PROVEN

Random noises
𝑿𝑿 − 𝒙𝒙𝟎𝟎 ∼ 𝑫𝑫𝝐𝝐

Probabilistic Robustness 
Certification

Worst-case perturbation

𝑓𝑓 𝑥𝑥 = NN, and 𝑥𝑥0= Original image, 𝑥𝑥= Perturbed image, 𝑥𝑥 − 𝑥𝑥0 ≤ 𝜀𝜀

𝐿𝐿 ≤ 𝑓𝑓 𝑥𝑥 ≤ 𝑈𝑈

𝐿𝐿 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐿𝐿
𝑈𝑈 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑈𝑈

𝐿𝐿 = 𝐴𝐴𝐿𝐿𝑥𝑥 + 𝐵𝐵𝐿𝐿
𝑈𝑈 = 𝐴𝐴𝑈𝑈𝑥𝑥 + 𝐵𝐵𝑈𝑈

𝐿𝐿 = 𝐴𝐴𝐿𝐿 ∗ 𝑥𝑥 + 𝐵𝐵𝐿𝐿
𝑈𝑈 = 𝐴𝐴𝑈𝑈 ∗ 𝑥𝑥 + 𝐵𝐵𝑈𝑈
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PROVEN bounds the probability of NN output

Ρ[𝐿𝐿 > 𝑎𝑎] ≤ Ρ[𝑓𝑓 𝑋𝑋 > 𝑎𝑎] ≤ Ρ[𝑈𝑈 > 𝑎𝑎]PROVEN:

Lower bound on the probability Upper bound on the probability

𝑓𝑓 𝑥𝑥 = NN, and 𝑥𝑥0= Original image, 𝑥𝑥= Perturbed image, 𝑥𝑥 − 𝑥𝑥0 ≤ 𝜀𝜀

𝑋𝑋 − 𝑥𝑥0~𝐷𝐷𝜀𝜀 ,𝑎𝑎 ∈ 𝑅𝑅, 𝐿𝐿 = 𝐴𝐴𝐿𝐿 ∗ 𝑋𝑋 + 𝐵𝐵𝐿𝐿, 𝑈𝑈 = 𝐴𝐴𝑈𝑈 ∗ 𝑋𝑋 + 𝐵𝐵𝑈𝑈

To find Ρ[𝐿𝐿 > 𝑎𝑎] & Ρ[𝑈𝑈 > 𝑎𝑎]:
Case (I): 𝑋𝑋𝑖𝑖 independent

(a) direct convolution 
(b) probabilistic inequalities  Lower bound ≈ 1

2
− 1

2
𝑒𝑒𝑒𝑒𝑓𝑓 𝑎𝑎−𝜇𝜇𝐿𝐿

𝜎𝜎𝐿𝐿 2

Upper bound ≈ 1
2
− 1

2
𝑒𝑒𝑒𝑒𝑓𝑓 𝑎𝑎−𝜇𝜇𝑈𝑈

𝜎𝜎𝑈𝑈 2

Lower bound ≥ �1 − exp − 𝜇𝜇𝐿𝐿−𝑎𝑎 2

2𝜖𝜖2 𝐴𝐴𝑡𝑡,:
𝐿𝐿

2
2

0 , 𝑖𝑖𝑓𝑓 𝜇𝜇𝐿𝐿 − 𝑎𝑎 ≥ 0
, 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑜𝑜𝑒𝑒

Case (II): 𝑋𝑋 is multivariate Gaussian 



Experiment results 

• We compute the robustness lower bound 𝜖𝜖 with various confidence for
• Input noises: bounded SubGaussian noises and Gaussian noises 
• Networks: various MLP, CNN architectures/activations
• Training method: standard/adversarial training 

• We observed the following interesting results
• Compared to the worst-case certified lower bound (with 100% provable guarantees), 

the lower bound with provable 99.99% confidence level can be much larger 
• up to 3.5×-5.4× larger for standard networks, and up to 7× larger for robust networks

• With better (tighter) robustness certification algorithms, the robustness lower bound 
is also larger 

• up to 1.3× larger
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PROVEN is general 
it compute robustness of general convolutional neural networks 
with certified probability when input perturbations are random 
noises
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Conclusion

1)

PROVEN is efficient
it builds on top of existing robustness certification framework 
(Fast-Lin, CROWN, CNN-Cert) with little overhead

2)



Questions? Come to Tuesday poster #70!  12

Worst-case perturbation
||𝒙𝒙 − 𝒙𝒙𝟎𝟎||𝒑𝒑 ≤ 𝝐𝝐

ICML ‘19
PROVEN

Random noises
𝒙𝒙 − 𝒙𝒙𝟎𝟎 ∼ 𝑫𝑫𝝐𝝐

Probabilistic Robustness 
Certification

Paper: http://proceedings.mlr.press/v97/weng19a.html, GitHub: https://github.com/lilyweng/proven
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