PROVEN:

Verifying Robustness of Neural Networks with a Probabilistic Approach

Tsui-Wei (Lily) Weng¹

Pin-Yu Chen²*, Lam M. Nguyen²*, Mark S. Squillante²*, Akhilan Boopathy¹, Ivan Oseledets³, Luca Daniel¹ MIT¹, IBM Research Yorktown², Skoltech³, alphabetical order*

Arxiv: https://arxiv.org/abs/1812.08329 **GitHub:** https://github.com/lilyweng/proven

Neural networks are vulnerable to adversarial attacks

Existing robustness certification algorithms compute a certified lower bound of min adversarial distortions

3

Neural networks are also vulnerable to random noises

LeNet is fooled by Gaussian noises (Bibi etal, CVPR 2018)

VGG-F is fooled by uniform noises (Fawzi etal, NIPS 2016)

Adv image: 4

Adv image: 7

Adv image: 3

Adv image: 8

True image: cauliflower

Adv image: artichoke

Neural networks are also vulnerable to random noises

Attacks with Uniform & Bernoulli noises:

Perturbed ℓ_{∞} magnitude	$\epsilon = 0.25$		$\epsilon = 0.20$	
MNIST model	Uniform	Bernoulli	Uniform	Bernoulli
2-layer CNN, ReLU	25%	72%	15%	65%
2-layer CNN, tanh	91%	99%	83%	98%
2-layer CNN, sigmoid	92%	100%	15%	44%
2-layer CNN, arctan	7%	44%	22%	22%
3-layer CNN, ReLU	69%	90%	53%	99%
3-layer CNN, tanh	11%	25%	0%	41%
3-layer CNN, sigmoid	14%	24%	30%	76%
3-layer CNN, arctan	24%	83%	55%	73%
Perturbed ℓ_{∞} magnitude	$\epsilon = 0.025$		$\epsilon = 0.020$	
CIFAR model	Uniform	Bernoulli	Uniform	Bernoulli
5×[2048], ReLU	15%	16%	13%	15%
6×[2048], ReLU	17%	20%	14%	20%
5-layer CNN, ReLU	22%	31%	17%	28%

Success rate over randomly selected 100 images can be up to 100%

Existing approaches analyzing neural networks + random noises

Existing works

- <u>Assumptions</u> on locally approximately flat decision boundaries (Franceschi etal, Alstats 2018)
- <u>Assumptions</u> on Gaussian distributed latent input vectors (Fawzi etal, 2018)
- <u>Estimate</u> probability of rare events via Monte Carlo approach (Webb etal, ICLR 2019)

Our goal

Provide a certificate of neural network robustness under random noises

✓ Bounded Subgaussian Noises (e.g. Uniform, Bernoulli)
✓ Gaussian Noises (w/ and w/o Correlations)

Key Idea

Leverage prior robustness certification frameworks (Fast-Lin[1], CROWN[2], CNN-Cert[3]) on adversarial perturbations

- [1] Weng etal, "Toward Fast Computation of Certified Robustness for ReLU Networks", ICML'18
- [2] Zhang etal, "Efficient Neural Network Robustness Certification with General Activation Functions", NeurIPS'18
- [3] Boopathy etal, "CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks", AAAI'19

Worst-case robustness certification algorithms

f(x) = NN, and $x_0 = Original image$, x = Perturbed image, $||x - x_0|| \le \varepsilon$

Our proposal: PRObabilistically VErify NN robustness

PROVEN bounds the probability of NN output

f(x) = NN, and $x_0 = Original image$, x = Perturbed image, $||x - x_0|| \le \varepsilon$

PROVEN:
$$P[L > a] \le P[f(X) > a] \le P[U > a]$$

Lower bound on the probability

Upper bound on the probability

$$X - x_0 \sim D_{\varepsilon}, a \in R, L = A_L * X + B_L, U = A_U * X + B_U$$

To find P[L > a] & P[U > a]:

Case (I): X_i independent

(a) direct convolution(b) probabilistic inequalities

$$\text{Lower bound} \geq \begin{cases} 1 - \exp\left(-\frac{(\mu_L - a)^2}{2\epsilon^2 \|A_{t,:}^L\|_2^2}\right) & \text{, otherwise} \\ 0 & \text{, if } \mu_L - a \ge 0 \end{cases}$$

Case (II): *X* is multivariate Gaussian

Lower bound
$$\approx \frac{1}{2} - \frac{1}{2} erf\left(\frac{a-\mu_L}{\sigma_L\sqrt{2}}\right)$$

Upper bound $\approx \frac{1}{2} - \frac{1}{2} erf\left(\frac{a-\mu_U}{\sigma_U\sqrt{2}}\right)$

Experiment results

- We compute the robustness lower bound ϵ with various confidence for
 - Input noises: bounded SubGaussian noises and Gaussian noises
 - Networks: various MLP, CNN architectures/activations
 - Training method: standard/adversarial training
- We observed the following interesting results
 - Compared to the worst-case certified lower bound (with 100% provable guarantees), the lower bound with provable 99.99% confidence level can be much larger
 - up to $3.5 \times -5.4 \times$ larger for standard networks, and up to $7 \times$ larger for robust networks
 - With better (tighter) robustness certification algorithms, the robustness lower bound is also larger
 - up to 1.3× larger

Conclusion

1) PROVEN is general

it compute robustness of general convolutional neural networks with certified probability when input perturbations are random noises

2) PROVEN is efficient

it builds on top of existing robustness certification framework (Fast-Lin, CROWN, CNN-Cert) with little overhead

Questions? Come to Tuesday poster #70!

Paper: http://proceedings.mlr.press/v97/weng19a.html, **GitHub:** https://github.com/lilyweng/proven

17